Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 44(3): 334-341, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34407726

RESUMEN

This work shows the efficiency of wash waters from lipopeptide production as a remediation strategy to treat urban water samples contaminated with p-cresol. The harvesting step in surfactin production involved a centrifugation step, generating a major soluble fraction and a fraction that is adsorbed to the biomass. The adsorbed fraction was recovered by washing steps. These wash waters containing lipopeptides (mostly surfactins), were successfully used to adsorb and solubilize p-cresol. The method of decontamination applied to an artificially contaminated natural water was monitored using a biosensor based on laccase/magnetic nanoparticles. Given the amount of surfactin within the wash water, the removal of p-cresol from artificially contaminated water was approximately 46.0%. This result confirms the successful and sustainable application of surfactin-rich wash waters to remove p-cresol from artificially contaminated natural water. The adsorption mechanism is potentially based on a multi-layer adsorption process, considering Langmuir and Freundlich adsorption isotherms.


Asunto(s)
Lipopéptidos , Contaminantes Químicos del Agua , Cresoles , Adsorción , Agua
2.
World J Microbiol Biotechnol ; 37(7): 123, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34160683

RESUMEN

Lipopeptides are important secondary metabolites produced by microbes. They find applications in environmental decontamination and in the chemical, pharmaceutical and food industries. However, their production is expensive. In the present work we propose three strategies to lower the production costs of surfactin. First, the coproduction of surfactin and arginase in a single growth. Second, extract the fraction of surfactin that adsorbs to the biomass and is removed from the growth medium through centrifugation. Third, use microbial biomass for the remediation of organic and inorganic contaminants. The coproduction of surfactin and arginase was evaluated by factorial design experiments using the LB medium supplemented with arginine. The best conditions for surfactin production were 22 h of growth at 37 °C using LB supplemented with arginine 7.3 g/L. Almost similar conditions were found to produce highest levels of arginase, 24 h and 6.45 g/L arginine. Decontamination of phenol and copper from artificial samples was attained by treatment with residues from lipopeptide production. Thus, cell suspensions and wash-waters used to extract surfactin from the biomass. Cell suspensions were used to successfully remove hydroquinone. Cell suspensions and wash-waters containing surfactin were successfully used to recover copper from solution. Specific monitoring methods were used for phenol and metal solutions, respectively a biosensor based on tyrosinase and either atomic absorption flame ionization spectrometry or absorbance coupled to the Arduino™ platform. Therefore, we report three alternative strategies to lower the production costs in lipopeptide production, which include the effective recovery of copper and phenol from contaminated waters using residues from surfactin production. Sustainable and profitable production of surfactin can be achieved by a coproduction strategy of lipopeptides and enzymes. Lipopeptides are collected in the supernatant and enzymes in the biomass. In addition, lipopeptides that coprecipitate with biomass can be recovered by washing. Lipopeptide wash-waters find applications in remediation and cells can also be used for environmental decontamination.


Asunto(s)
Arginasa/biosíntesis , Bacillus/enzimología , Bacillus/crecimiento & desarrollo , Bacillus/metabolismo , Lipopéptidos/biosíntesis , Péptidos Cíclicos/biosíntesis , Bacillus/genética , Proteínas Bacterianas/biosíntesis , Biomasa , Reactores Biológicos , Cobre/metabolismo , Medios de Cultivo , ADN Bacteriano , Microbiología Ambiental , Restauración y Remediación Ambiental , Hidroquinonas/metabolismo , Fenol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...